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Abstract--Steady thermogravitational and thermocapillary driven flows of two immiscible liquid layers is 
considered in the case of a cavity subjected to a horizontal temperature gradient. The Navicr-Stokes 
equations with Boussinesq approximation are solved numerically by a finite difference method in a staggered 
grid. The pressure correction method is used to decouple the pressure calculation from that of the velocity. 
Convective patterns have been emphasized. numerically. They depend on property ratios of the two liquid 
layers and on depth fractions of the layers. Reduction of convection in the lower (encapsulated) layer can 
be achieved by a proper choice or the parameters. An asymptotic solution for the velocity is also presented 
for an inlinite cavity (A + I;). It predicts the shape of the velocity profiles and determines the number of 
convective cells through the two layers. Both situations with rigid or with free lop surfacc have been 
considered. This latter configuration is similar to that of an encapsulated crystal growth. The computations 
have been performed for flat intcrfaccs, liquid-liquid and liquid-gas. Most or them have been limited to 

a cavity or aspect ratio A = 2 (length/height). 

1. INTRODUCTION 

THE FLOW in a two-layer system of immiscible fluids 
is known to exhibit phenomena which may not occur 
in one-layer systems ; an example is the Bknard prob- 
Icm (horizontal layers heated from below). In the 
classical (one-layer) BCnard problem. the ‘exchange 
of stabilities’ hold and all the eigenvalues of the 
linearized problem are real. In a two-layer system, 
howcvcr. Renardy and Joseph [I] showed that both 
real and complex spectra exist. The two-layer system 
is much more complicated than the one-layer system 
due to continuity conditions that must be satisfied at 
the interface between two immiscible fluids. For the 
two-layer Bknard problem, attention has been paid to 
determine the onset of instabilities by means of linear 
stability analysis [2-71. More recently, the flow of two 
immiscible fluids of different dcnsitics. in the case 
where a horizontal temperature gradient is applied, 
also received great consideration. This is due to the 
interest in the encapsulation technique for crystal 
growth, such as the encapsulated Czochralski (LEC) 
method [8] and the encapsulated floating zone tech- 
nique for space processing of high-purity semi- 
conductors. These two crystallization techniques 
involve multi-layer systems (two or three) subjected 
to both vertical and horizontal temperature gradients. 
Therefore, buoyancy driven convection (due to the 
density differences in the gravity field) and thermo- 
capillary convection (induced by surface tension 
gradients along the non-isothermal interface due to 
the temperature dependency of the surface tension) 
may occur simultaneously. 

For (horizontal) two-layer systems subjected to a 
horizontal temperature gradient, Villers and Platten 
[9] conducted an experimental study of the horizontal 
velocity profiles in each layer and temperature vari- 
ation of interfacial tensions in a confined cavity of 
two immiscible liquids (water-heptanol). They found 
the dominant role of the interfacial tension effect. 
Crespo del Arco ef al. [IO] numerically studied pure 
thcrmocapillary convection in two immiscible fluids 
with Pr, = I and Pr? = 0.01 for Mu < 120; the flow 
in the lower layer of fluid can be significantly reduced 
by a proper choice of Marangoni numbers such that 
Mn, = 24~~. Surprisingly there is not good agree- 
ment for low Mu with an analytical solution attributed 
due to Doi and Koster [I I], except for the case 
Mu, = 2Map 

The main objective of this research is to investigate 
the convective flow induced by buoyancy and inter- 
facial forces in a rectangular cavity containing two 
layers of immiscible fluids. The interfacial tension 
gradients, da/dT, are created by a temperature differ- 
ence imposed along the interface between two liquids 
and the liquid-gas interface. All the numerical results 
are obtained by a finite difference method. In this 
paper, the interface and the top surface are assumed 
to be flat. For the top surface two variants have been 
considered : either rigid or free. We show the influence 
of thermocapillary forces on the buoyancy-driven 
flow in each liquid layer. Also we give analytical 
expressions for the horizontal velocity in the two cases 
(rigid or free top surface), which can describe the types 
of convective pattern and predict some characteristics 
of the flow structure in the two-dimensional cavity. 
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NOMENCLATURE 

aspect ratio, L/H 
Biot number, u, HI,!, 
gravitational acceleration 
Grashof number, g/~26THJ/v~ 
height of the cavity 
thickness of top layer 
thickness of bottom layer 
length of the cavity 
Marangoni number for ith layer, Pr Re, 
Prandtl number, v?/s(? 
Reynolds number, yibTH’/v,pz 
temperature 
constant temperature at cold vertical wall 
constant temperature at hot vertical wall 
reference temperature, H6T 
maximum temperature difference, 
Th - T, 
reference velocity, v?/H 
dimensionless thickness, H,/H 
thickness ratio of two layers, H, /Hz 
dimensionless pressure 
stream pattern parameters 
dimensionless horizontal velocity 
component 
dimensionless vertical velocity 
component 

s dimensionless horizontal coordinate 

J’ dimensionless vertical coordinate. 

Greek symbols 

; 

thermal diffusivity 
thermal expansion coefficient 

;’ surfdce-tension temperature coefficient, 
-&/CT 

ST horizontal temperature gradient, AT/L 

;I 
heat transfer coefficient 
dimensionless tempcraturc 

fl:, ambient temperature 
I, thermal conductivity 
P dynamic viscosity 
\’ kinematic viscosity 

P density 

; 

surface tension 
any physical variable 

\y dimensionless strcamfunction. 

Subscript 
i physical propertics of liquid i. i = I, 2. 

Superscript 
* physical property ratio of liquid 1 to 

liquid 2 (e.g. /I* = /I,//??). 

1 

J 
2. PHYSICAL AND MATHEMATICAL MODEL most of the present calculations, we will take A = 2 

and /I* = I. 
We consider a system of two immiscible viscous The rectangular cavity has a rigid bottom wall, a 

liquids, 1 (above) and 2 (below) (see Fig. I), filling 
a rectangular cavity. The Cartesian S-V coordinate 
system contains the temperature gradient and the 
gravity accelerationy, in the negativeJf direction. The 
thickness of layer I is H,, and that for layer 2 is 
Hz, and the total thickness is H. The aspect ratio is 
A =,L/H, where L is the length of the cavity. The 
thickness ratio of the two layers is /I* = HI/Hz. In 

liquid I-liquid 2 interface and two types of boundary 
conditions for its upper surface : (i) rigid (denoted cast 
A) ; and (ii) free (denoted case B). The vertical walls 
of the cavity are maintained at different constant tem- 
peratures: T, and T,, (T,, > T,). The horizontal walls 
are considered as perfectly conducting with a linear 
temperature profile. At the interface between the 
two layers, there exists a surface tension (mechanical 
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FIG. 1. Geometry and coordinate system or the physical model. 
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coupling), (T. which is assumed to linearly depend on 
the temperature 

a2 = a,,>-j12 ( T2 - T,,) with T,, = (T,+ T,)/2 

(1) 

where cr,,? is the interface tension between liquid I and 
liquid 2. and y? = -?az/?T the rate of change of 
interface tension with temperature, at the temperature 
T,,. The two constants are related to material prop- 
crties of both liquid I and liquid 2. 

In case B, the top free surface is subjected to a 
surface tension varying linearly with temperature 

01 = ,J,,I -;,(T, -7-d (3 

where o,), is the surface tension between liquid 1 and 
air. and 7, = -&,/CT, at temperature T,,. In this 
paper, the free top surface is assumed to be flat; the 
liquid l-liquid 2 interface is assumed to be unde- 
formable and impervious. Therefore, heat is trans- 
ferrcd through this interface only by the means of 
conduction. The density p,. is directly conncctcd to 
the temperature, through the Boussinesq approxi- 
mation by 

P, = P”,[l -P,(r,- T”)l. (3) 

Navier-Stokes and energy equations should be sat- 
isfied in each liquid layer. The governing equations 
can be written in the form of the primary dependent 
variables. that is U,, p,. T,, with U, = (zI,, r,), as 

(4) 

+ZDi [g + $1 +ZBT,O (6) 

g)+zTi[uig+lli;]= TDi[~+g] (7) 

where 

T, - T, 
oi z ~ 

T . rcr 

The constants in these dimensionless equations (5)- 
(7) depend on the choice of the scaling factors. We 
use Lrer = H, UrC, = vz/H, and t,,,. = H’/v2 as scaling 
factors for length, velocity and time, respectively. 
Temperature scale is taken as Trer = HST (6T = 
AT/L; AT = T, - T,) and the reference pressure is 
taken as prer = p2 Vi,, so the above coefficients are the 
following : 

ZU, = I; ZP, = I/p*; ZD, = \I* 

ZBT, =Gr/l*. ZT, = I: TD, =X*/PI 

ZUz = I; ZP?= 1; ZD?= I; ZBTz =GI 

ZT2 = I: TD, = I/Pr. 

Thus. the relations between two coefficient groups are 

the following : 

zu, = zu2; ZP, = zp,jp* 

ZD, = v*ZD2: ZBT, = /j*ZBT, 

ZT, = ZT,; TD, = r*TD?. 

The Grashof number. Gr, and the Prandtl number, 
Pr, entering in these cocfficicnts arc dcfincd as cor- 
responding to the lower layer: 

(-$A~--, p,.=\:, 
g/l,(fiT)H 

1’: X? 

The dimensionless equations (4)-(7) are subjected to 
the following boundary conditions. 

Kinetnatic horcndary cotlditiorls 
No-slip conditions are imposed at the rigid walls 

(bottom and two vertical walls) : 

u2 = 11~ = 0, at .I* = -11: (with hz = H2/H) (8) 

11, = L‘, = 0. at s=O and A. (9) 

For a rigid top surface (case A), we have 

II, = 11, = 0 at j* = /I, (with h, = H,/H). (10) 

For a free top surface (case B), the contribution of 
thermocapillary forces in the convective Row enters 
the governing equation via the tangential-stress 
condition 

au, 30, 
p*%= -Re,ds, at .I’=/?, (11) 

where the surface Reynolds number Re,, relative to 
liquid I, is defined by 

and the Marangoni number, relative to Re,, is 
denoted by Ma, = Pr Re, . 

On the flat interface between the lower and upper 
layers, continuity of velocity must be satisfied 

11, = U? and 11, =l’?= 0, at J‘ = 0. (12) 

The balance of the stresses has to be satisfied too, and 
thus 

with 
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and the Marangoni number, relative to Rez. is 
denoted by bltrZ = Pr Re,. 

The Reynolds number Re, is relative to liquid 2. 
which characterizes the intcrfacial forces due to the 
tempcraturc dependence of surface tension. 

Tiwrnd bowzclcrr~~ mdi~ions 
The vertical walls arc considered as isothermal 

II, = 0. at .Y = 0 and 0, = A. al .Y = A. 

(14) 

The horizontal top wall (for cast A) and the lower 
wall are considered as perfectly conducting 

0, = s. at y  = /I, and J’ = -hz. (15) 

On the free top surlacc (for cast B) 

Al , 
7,; +Bi(fl, -O;,) = 0 

where Bi = 11, H/i, is the Biot number and TV, the heat 
transfer cocflicient between liquid 1 and air. and II,, 
the ambient dimensionless temperature. In the present 
work the numerical calculations were performed for 
Bi = 0. 

At the liquid l-liquid 2 interface the continuity of 
temperature and the continuity of heat flux are rep- 
resented. respectively. by 

0, = 02 (17) 

(18) 

3. ASYMPTOTIC SOLUTION AT FINITE H AND 

INFINITE L (A -t 2) 

3. I. R<yi/ top surjhce (use A) 
The theoretical aspect of thermal convection in two 

superposed immiscible fluid layers in a rectangular 
cavity with differentially heated end walls has been 
studied by Villcrs and Platten [9]. They have given 
horizontal velocity and temperature profiles in case 
A as a function of the various parameters such as 
expansion cocflicient, viscosity, depth of each layer, 
and the interfacial tension gradient along the inter- 
face, by considering that there is no vertical velocity 
component and that the horizontal velocity com- 
poncnt is the same at any horizontal position. Another 
analytical investigation of thermal convection in a 
shallow cavity (A + ‘JJ) filled with two immiscible 
fluids is also performed by Wang et al. [l2]. 

After taking into account the equilibrium con- 
ditions at the interface given by equation (I 3), and 
the mass conservation conditions, expressions for the 
horizontal velocity of each liquid layer in dimen- 
sionless form can be obtained. Upon the basis of the 
work in ref. [9], we may here give another expression 
of velocity profiles for case A and derive a new 
expression for the free top surface (case B). 

For case A. the horizontal velocity is expressed in 
terms of a reduced coordinate J“ as 

+l(Pa,+Gr)j.‘-APa,] 

(0 < ~9’ < I), with ~2’ = ;:’ (19) 
I 

u2(j”) = z [Grf’+ :(4Gr+ Po,)J-” 

(- I <J*’ < 0). with J*’ = ,;” (20) 
z 

with 

Gr( I - Qa) + 
l2Rc, 
-ie 

2 1 
PCl, = - ~~~~-- ~-. 1 +QP 

(21) 
(22) 

Expressions (21) and (22) contain two parameters. 
Qa and Qp. introduced in ref. [9] 

Qa = /l*p*(h*)’ 

Qx represents the relative importance of the buoyancy 
bctwecn upper and lower layers, and Q/L is the ratio of 
the viscous forces. Pa, and PO? are two dimensionless 
parameters which determine completely the shape of 
the velocity profiles in layers I and 2 ; they involve the 
ratios of the characteristic properties of two liquids 
and the effect of the interfacial forces. For these 
reasons, Pu, and Pu2 will be referred to as ‘stream 
pattern parameters’ for the upper and lower layers, 
respectively. We can remark that the velocity (cqua- 
tions (19) and (20)) does not depend on Pr. 

We compared the velocity profile (equations (19) 
and (20)) with the solution given by Villers and Plattcn 
[9]; (Fig. 5(c)) for k = - Re,/Gr = 0.35 (c.g. Gr = 
1000 and ReZ = -350) Qa = I .33 and Qp = X.73, 
/I, = 5.6 and /r? = 3.7. The form of the profile is the 
same (Fig. 2). Unfortunately, the velocity values can- 
not be compared as they are absent in Fig. 5(c). 

In the absence of gravity, i.e. Gr = 0, the 
expressions of velocity profiles are quadratic with J, 
thus there exists only one convective cell in each layer 
induced by thermocapillary force In the case Gr # 0, 
some characteristics of the velocity profiles may be 
found, from expressions (19) and (20) : 

(I) For the particular case where Pa, = Pa2 = 0, 
the velocity at the interface is zero. Since the roots of 
u, (1)‘) and II&‘) at which velocity is equal to zero are 
1’ = I, l/2, 0, -l/2 and -I, there is only one cell in 
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FIG. 2. Horizontal velocity profile Tar case A at Gr = IO’. Rr, = -350;Qa= 1.33andQ/l=8.73./1, =5.6 
and /I? = 3.7. 

each layer, with the same direction of rotation. The 
needed condition to have Pa, or PoZ equal to zero is 

(23) 

(2) When 0 < PN~/GI. < 2, there exists two negative 
roots in the lower liquid and only one positive root in 

the upper liquid layer. ThereTore, we know that there 

arc two convective cells in liquid layer 2 and only one 
convective cell in liquid layer I. 

(3) When 0 < Pa,/Gr < 2 (which is analogous to 
case (2)), there exists two positive roots in the upper 
layer and only one negative root in the lower layer 
(except the roots at the upper and lower rigid walls). 
Consequently. there is only one cell in layer 2 and two 
cells in layer I. 

(4) The velocity at the interface (y’ = 0) is positive 
when Pa, > 0 (or Pa, < 0) and negative when 
Pa2 < 0 (or Pa, > 0). 

3.2. Free top surjace (case B) 
Expressions of the horizontal velocity in the two 

layers are given here 

1+6Qa+lO$$ 

4(Qp+:) “” 

Qa 
1+2G 

+ T@jzp”+ 
3Qn-2 

12(Q~+:) 

+&(-3(Re,+ (l+&)Re,)f 

3Re?+ LRe, y’+(Re, -2Red 
Q/J > > 

(24 

The velocity profiles in each liquid layer depend on 
(Gr, Re,, Rez, Qp, Qsr) and are the sum of two terms. 
The first term is related to buoyancy rorce and as 
usual is a cubic polynomial. The second concerns 
thermocapillary forces and is quadratic. In a gravi- 
tational field. when Re, = 2Re,, the velocity profiles 
of the lower liquid are not influenced by the surface 
tension gradients at the interface between the two 
liquids (or at the free surface of the upper liquid). In 
addition, the interface is at rest when Qcr = 2/3. 

Without gravitation, i.e. at Gr = 0, the velocity pro- 
files depend on (Re,, Re?. Q/l) and only one con- 
vective cell appears in the lower liquid layer since 
there are only two roots (with one always located at 
the lower wall). In particular, it should be noted that 
no convective motion exists in the lower liquid layer 
when Re, = 2Re, (i.e. when: iia,/dT = 2 iiaJ8T). 
This condition for zero motion was previously given 
by Doi and Koster [ 1 I]. 

4. NUMERICAL SOLUTION FOR FINITE 

LAYERS 

The complete system of the governing equations 
(with appropriate boundary conditions) is solved by 
a finite difference technique with an alternating-direc- 
tion implicit (ADI) formulation to obtain a steady 
solution, asymptotically (i.e. for t -+ co). The depen- 
dent variables (ui, ui, pi, Oi) are represented by their 
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values on a staggered grid [13]. WC use a prcdiclor- 
corrector method to decouple the pressure com- 
putation from that of the velocity and temperature 
[ 141. This approach requires the resolution of a Pois- 
son equation for the pressure, at each time step. For 
the internal nodes, the spatial derivatives are approxi- 
mated by standard central diffcrenccs. At the bound- 
ary. second-order accurate discrctization is employed 

?9 40-4, %+42-341 
~~~ = -,.5s- + -~--3.v - ~~ 
(:.\- 

where (f, ,, $2 arc internal nodes and d),, the boundary 
node. For the external nodes. we use the classical 
approximation [ 151 

For spatial discretization, the number of grids in the 
vertical direction is NYI in the upper layer and NY2 
in the lower one. Different values or NYI and NY2 
arc used for different thickness ratios of the two layers, 
in order to keep the accuracy. 

The grid-dependency of the solution was analyzed 
for three uniform grids or (21+21)x81, 
(31+31) x I21 and (41+41) x I61 points for cast B. 
There arc many factors affecting the convection in 
two-layer systems. But. l-or these grid tests, we choose 
the simplest property ratios such as A = 2, 
/I* = p* = g* = j,* = 1. p* = 0.1. and /I* = 5. The 
other chosen dimensionless parameters are : Gr = IO“, 
Re, = -150, Rel = -100, and Pr= I. The main 
features of solutions for different grids are presented 
in Table I, for a steady solution. They concern some 
characteristic values such as : II,“,,,*, I’,,~*, flpn,** and Al,,,, 
(i = I, 2), where II,_&- is the maximum of 11~ at .v = 0.25, 

L’h. is the maximum of r, at ~9 = 0.125 and L’? at 
J’ = -0.125, uI; mil, (Us,,,) is the maximum (minimum) 
of the velocity at free top surrace and L,,,,,, (LI,,,,) is the 
maximum (minimum) of the interface velocity. 

The typical CPU time required to reach a steady 
solution is 0.2 s per time step for a (31 +3l) x I21 
mesh and 0.35 s Car a (41+41) x I61 mesh. All com- 
putations are carried out in double precision on an 
IBM 3090-600/VF computer. The difference between 
the velocities obtained for a (31+31) x I21 mesh and 
a (21 +2l) x 81 mesh, is generally less than 4%. The 
difference for a (41+41)x I61 mesh and a 
(31 +3l) x I21 mesh is generally less than I % ; but 

the CPU time. per time step, increases by a factor of 
75%. We finally selected the (31 +3l) x I21 grid which 
gives a good compromise (enough accuracy without 
excessive comput&on time). 

5. RESULTS AND DISCUSSION 

In nunicrical simulations or convcctivc flow in lwo- 
layer systems, both positive and negative Reynolds 
numbers arc considered. These two opposite situ- 
ations arc obtained by changing the sign of surface 
tension gradient which fixes the direction of the 
thcrmocapillary force. It is possible to realize these 
different situations through the proper choice of two 
immiscible liquids. All the results reported below were 
obtained with /i* = (x* = i.* = I. p* = 0.1. and 
/j’* = 5. and for zero heat flux through the external 
boundary (~1 = /I,). This cast corresponds to 
Qc( = 0.5 and Q/L = I, and thus Pa, = -2Pn,. 

In Figs. 3(a) and 4(a) we compare the analytical 
profile of horizontal velocity with the numerical 
results in the vertical median plane (at s = I), for 
casts A and B, rcspcctivcly. The numerical results are 
in good agreement with the analytical model. except 
that there exists a small difference near the region of 
the maximum (minimum) velocity, which is the result 
of confinement effect; the flow has not been fully 
accelerated in the horizontal direction. In Figs. 3(b), 
(c) and Figs. 4(b), (c). we present the numerical 
streamline and isotherm patterns, for cases A and B, 
respectively. 

5. I. Rigid top IW/I (UISC A) 
Five different groups of the physical parameters 

have been selected for showing typical convections 
in a rectangular cavity for two-layer systems with 
a constant thickness ratio of the two liquid layers 
(/I* = I). which are driven by the buoyancy forces and 
the su&cc tension gradients created by a temperature 
difference imposed along a flat liquid l-liquid 2 inter- 
face : 

(I) In Fig. 3 the streamlines and the horizontal 
velocity profile in the mid-plane (at x = A/2) are 
shown for Gr = IO’, Re2 = - 100 (positive &?/dT) 
and Pr = I. It corresponds to specific values of the 
‘stream pattern parameters’ such that Pa,/Gr = 0.02 
(Pa2/Gr = -0.01). In this case the analytical velocity 

Table I. Solution katures for case B, Gr = IO”, Pr = I, Re, = - 100, Re, = - I50 and Bi = 0 

Number of %“I c ‘MI 
grids 

(NYl+NY2)xNX i= I i=2 i= I i=2 4-“JkM. uL,km 

(21+21)x81 0.7609E+I O.lOOlE+2 0.7786 0.5647E + I 0.939;E + I 
0.23lOE+ I 

-0.2347E + I 

(31+31) x I21 0.7546Ef I O.l007E+2 0.7869 0.5692Ef I 
0.9355E + I 0.2288E+ I 

0 -0.2346E+ I 

(41+41) x I61 0.7515E+ I O.l009E+2 0.7921 0.57llE+l 0.9337E + I 0.2283E+ I 
0 -0.2346E+ I 
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(a) 

FIG. 3. Characteristic results for case A at Gr = IO”, Pr = I. Re2 = - 100: (a) horizontal velocity profile 

on the vertical median plane; (b) streamfunction patterns. ‘I’,,,,, = 1.565, Y,,, = -0.1375 x IO- ’ : (c) 

isotherm patterns. 

at the interface is close to zero and there exists only 
one convective cell in layer 2 and two cells in layer I ; 
but, the secondary counter-rotating convective cell 
near the interface is very weak and thin, and cannot 
be seen in Fig. 3(a). Figure 5 shows that the interface 
velocity is also close to zero. The profile along s can 
be divided into three regions: with very low velocity 
in the central region and higher velocity near the cold 
and hot walls. That means that the upper cell imposes 
its flow direction at y  = 0, near the end regions. When 
we slightly decrease Re2 (e.g. Rez = - 104.2), Pa, and 
Pn2 vanish, and then the central region with negative 
velocity disappears (the velocity is positive all along 

the interface). The interface tension acting against 
buoyancy (for the lower liquid 2) strengthens the flow 
motion from the cold to the hot end at the interface. 
There exists a main vortex in upper liquid I driven 

by interfacial thermocapillary and buoyancy forces, 
together. 

(2) To consider a case in which the thermocapillarity 
acts more strongly than buoyancy forces into the 
bulk, we decrease Gr and Pr (thus increasing Re). 
As an example, we take Gr = 103, Pr = 0.1, and 
Rez = - 1000, leading to the following stream-pat- 
tern parameters, Pa,/Gr = -47.5 (PuJGr = 23.75). 
In this case (see Fig. 6), the velocity at the interface is 
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(a) 

(b) (d 

FIG. 4. Characteristic results for case B at Gr = 104, Pr = I. Rez = - 100, Re, = - 150 and Bi = 0: 
(a) horizontal velocity profile on the vertical median plane; (b) streamfunction patterns, Y’,,, = 1.638, 

Y’,,, = -0.2321 ; (c) isothermal patterns. 

positive and there exists a single counter-rotative cell 
induced mainly by interface tension in the lower layer 
and a single cell induced by buoyancy (added by inter- 
face tension) in the upper layer. The horizontal vel- 
ocity at the interface reaches the maximum value in 
the cavity mid-plane. 

(3) We consider negative daJaT, which can be con- 
sidered as the ‘opposite’ of case (2). Figure 7 presents 
results for Re, = 1000, where the values of stream- 
pattern parameters are Pa,/Gr = 48.5 (PaJGr = 
-24.25). The velocity at the interface is negative 
and reaches the minimum value in the entire flow 
field. In the liquid I layer the main counter-rotating 
cell induced by higher interfacial tension is formed 

and a buoyancy driven cell is not visible. In the liquid 
2 layer with the interfacial tension adding buoyancy 
at the interface, it remains a single strong cell. We 
can note that a large gradient of horizontal velocity 
appears near the interface, in both cases (2) and (3). 

(4) On the basis of case (l), we increase the thermo- 
capillarity by taking Re, = -250 (Fig. 8), for which 
Pa,/Gr = -0.7 (Pu,/Gr = 0.35). The results in the 
mid-plane are in good agreement with the prediction 
of infinite theoretical analysis obtained by equations 
(19) and (20). We can clearly find a second counter- 
rotating cell induced by the thermocapillary force near 
the interface. Under the secondary vortex, there exists 
a stronger convective cell induced by buoyancy forces 
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FIG. 5. Horizontal velocity profile at the liquid-liquid interface for Gr = IO” and Pr = I : for Re2 = - 100 
(A) and He2 = - 104.2 (*). 
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FIG. 6. Characteristic results for case A at Gr = IO’, Pr = 0.1, ReZ = - 1000: (a) streamfunction pattern, 
Y mnr = 4.6201, Y’,;. = -4.6232; (b) horizontal velocity profile on the vertical median plane. 
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FIG. 7. Characteristic results for ease A at Gr = IO>, Pr = 0.1, Rez = 1000: (a) streamfunction patterns, 

‘I’,,,;,, = 5.009, Y,,,,, = -4.601 I : (b) horizontal velocity profile on the vertical median plane. 

which has a larger size. The velocity at the interface 
is close to the maximum value of velocity profiles in 
the vertical median plane of this cavity. After the 
comparison with case (1) one could know that, with 
the au,mentation of interfacial thermocapillary 
action, the buoyancy-driven flow in the lower layer 
is weakened and the flow driven by buoyancy and 
thermocapillarity in the upper layer is augmented. 

(5) For Re2 = 100 and keeping the other par- 
ameters unchanged with respect to case (l), thermo- 
capillarity plays against buoyancy in the upper layer; 
its relative importance is demonstrated in Fig. 9. 
Beside the main tension-induced cell, the slight buoy- 
ancy-driven cell has a tendency to separate into two 
small vortices at the corners of the upper layer. Obvi- 
ously, the maximum of velocity in liquid I decreases 
and the one in liquid 2 increases as compared with 
case (1). 

Figure IO shows the influence of the thickness ratio 
/I* of the two liquid layers for Gr = IO”, Re2 = - 100 
(case (I); see Fig. 3). When h* is less than one (see 
Figs. IO(a)-(c)), the main motion occurs in the lower 
layer as a single cell (anti-clockwise) which is domi- 
nated by buoyancy (despite the opposition of thermo- 
capillarity). *This strong cell affects the direction of 
flow motion (which is clockwise) in the upper layer, 
for small /I*. This clockwise motion in the upper layer 
becomes less and less intense when h* is increased, 
and finally vanishes for /I* = 0.8 (Fig. IO(c)) ; at the 
same moment an anti-clockwise motion, mainly 
induced by buoyancy, increases. This buoyancy- 
driven flow in the upper layer appears in the corner 
(Fig. 10(b)) and finally occupies all the upper layer 
for /I* 2 0.8 (Figs. IO(c)-(f)). The variation of the 
streamfunction maximum (Y,J of the anti-clockwise 
cells (mainly induced by buoyancy) is shown in Fig. 
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FIG. 8. Characteristic results for case A at Gr = 104, Pr = I, Rel = -250: (a) streamfunction patterns, 
Y Illill = 1.365, Y,i, = -0.1692; (b) horizontal velocity profile on the vertical median plane. 

11, for the two layers; Y ,mD, increases and Yz2,*, 
decreases with the augmentation of the thickness 
ratio. When h* is greater than one (Figs. lo(d)-(f)), 
the change of the flow structure with increasing h* 
occurs in the opposite manner. There exists only one 
main cell in the upper layer, jointly driven by buoy- 
ancy and thermocapillarity (negative Re,). Then, in 
the lower layer, a buoyancy-cell exists at the cavity 
bottom (but becomes smaller and smaller), while an 
intermediate (clockwise) cell, induced by the upper 
layer flow, becomes stronger and stronger (Figs. 
IO(d)-(e)). In particular, two buoyancy-driven cells 
can be seen in the two corners of the lower layer in 
Fig. 10(e). A similar phenomenon has been observed 
in experiments with water-heptanol by Villers and 
Platten [16]. For higher h*, the buoyancy cells vanish 
and the clockwise cell occupies the entire lower layer 
(Fig. 10(f)). 

5.2. Free top surface (case B) 
An example of two immiscible liquids with free top 

surface is presented in Fig. 4, for h* = 1, and for 
Gr=104,Re,=-100,Re,=-150andPr=1.A~ 
compared with case A (Fig. 3), a secondary clockwise 
cell appears near the free top surface due to thermo- 
capillary forces, while the structure of flow fields in 
the lower layer is almost unchanged. In addition, we 
observe a third intermediate (clockwise) cell existing 
in the upper layer, near the interface, induced by the 
two main anti-clockwise cells generated by buoyancy 
in the upper and lower layers. Thus, the motion in 
two superposed liquid layers appears to be more com- 
plicated for the free than for the rigid top surface. 

The influence of thickness ratio on flow structure is 
shown in Fig. 12 (similar to Fig. 10, for case A). When 
the top surface is free, the flow configuration in layer 
2 is almost unchanged, but layer 1 presents obvious 
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(b) 

FIG. 9. Characteristic results for case A at Gr = 1OJ, Pr = I. Rez = 100: (a) streamfunction patterns, 
Y’,,, = 0.223 I x IO’, ‘I’,“,” = -0.4077 ; (b) horizontal velocity profile on the vertical median plane. 

changes. The strength of the buoyancy cell in the lower 
layer augments with the decrease of thickness ratio, 
h*, and the liquid at the interface moves from the hot 
end to the cold end walls, except near these end walls. 
Thermocapillarity on the free top surface overcomes 
buoyancy and forces the liquid to flow from the cold 
end to the hot end at the top surface. The buoyancy 
leads to two small vortices placed at the corners near 
the top surface ; these vortices decrease rapidly both 
in amplitude and in size with the decrease of thickness 
ratio. When h* = 0.2 in Fig. 12(a), the gravitational 
convection in liquid I almost vanishes. The convective 
cell induced by thermocapillary forces on the upper 
boundary and by the action of the lower liquid layer 
through the interface is always dominant in liquid 1. 
When h* > I (Figs. 12(c) and (d)), the gravitational 
convection dominates in layer I and intensifies with 

the increase of h*. The obvious difference from case 
A is that there exists a smaller clockwise vortex, driven 
by thermocapillary force, in the left-upper comer of 
liquid I, where large gradients of surface temperature, 
de/ax, produced by convective flow, induce strong 
changes in the surface tension (a,) against buoyancy 
convection. This thermocapillary-vortex seems to not 
vanish even for larger h*. 

In order to study the combined effect of surface 
tension gradients at the interface and free top surface, 
we consider two combinations of the Reynolds num- 
bers, Re, and Rez, such that Re, = 2Re, (case I) and 
2Re, = Re, (case II). Investigations have been made 
for a particular example where Qu = 2/3, for which 
the interface velocity of an infinite layer is zero for case 
I (after equations (24) and (25)). The other chosen 
physical parameters are: Gr = 104, h* = tl* = p* = 
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FIG. IO. Depth fraction effect on the streamlines (case A), for Gr = IO”. Re, = 100 and Pr = 1: (a) 
h* = 0.2; (b) /I* = 0.6; (c) h* = 0.8; (d) /I* = 1.6; (e) h* = 2.5; (f) /I* = 5. 

A* = 1, p* = 0.1, /3* = 2013 and a low Prandtl 
number: Pr = 0.01 (e.g. liquid metals). 

Case I (Re, = 2Re, = 8 x 104) 
We display in Fig. 13 the minimum value of hori- 

zontal velocities at interface, u,,,,. and at the free top 
surface, ur,,,, for Re, = 2Rez = 8 x IO4 and Gr = 104. 
The liquids at the iuterface and the free surface move 
from the hot end to the cold end of the cavity with 
positive Reynolds numbers and their values are nega- 
tive in our coordinate system. The minimum value of 
the velocity at the interface is much less than the one 
at the top surface, but is not zero, as predicted by 

the analytical method (equations (24) and (25)). The 
analytical velocities at the top surface are larger than 
the numerical results, since the flow is not fully 
developed in the two-dimensional case, in particular 
at high Reynolds numbers [17]. 

Streamlines for Re, = 2Re, = 8 x IO4 and the cor- 
responding variation of the horizontal velocity, ur, 
along the top surface and u,, along interface between 
two liquids are presented in Fig. 14. The lower layer 
exhibits a cell (the center of which is placed near the 
cold wall), but the fluid moves very slowly near the 
bottom. The flow structure mainly depends upon 
thermocapillary forces along the top surface and inter- 
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FIG. 1 I. Variation of the maximum streamfunction as a function of h*, for Gr = 104, Re, = - 100 and 
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FIG. 12. Depth fraction effect on the streamlines (case B), for Gr = 104, Re, = - 100, Re, = - 150, Bi = 0 
and Pr = 1 : (a) h* = 0.2, Y,,, = 6.011, ‘P,+ = -0.4949; (b) h* = 0.6, ‘I”,, = 3.536, Ymin = -0.8794; 

(d) h* = 1.6, Y,,, = 2.117, Y’,i. = -0.2882; (g) h* = 5, Y’,,, = 4.607, Ymin = -0.4439. 
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FIG. 13. Minimum velocities at interface (case B), for different Reynolds numbers such that Re, = 2Re,, 
forGr=104andPr=0.01. 
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Y mu1 = 3.8117 x lo*, Y’,,. = -0.6864 x IO2 ; (b) horizontal profiles at the free top surface U, and at the 

liquid-liquid interface U,. 
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face, and the effect of gravity forces is weak (relative 
to the thermocapillary force). 

The numerical results show that the maximum 
value of streamfunction in the upper layer, Y ,n,4L, 
increases much more rapidly than Y ?,,,, in the lower 
layer, when the Reynolds number is increased. 

Case II (Re? = 2Re, = 8 x 10“) 
Here, we show in Fig. 15(a) the minimum velocities 

at the interface and free top surface for 
Re2 = 2Re, = 8 x IO“ and Gr = IO’. These two spec- 
ific velocities are close to each other and differ from 
the analytical velocities of the infinite layer for higher 
Reynolds number. Note that the flow structure (Fig. 
15(b)) in the lower layer is more complex ; a clockwise 
intermediate cell in the upper has grown in intensity 
and size (reaching the end walls), near the interface 
where the thermocapillary effect has been greatly 
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(b) 

increased, compared to case I. The cell in the lower 
layer has augmented rapidly in intensity with the 
increase of Rez. 

In the above comparative simulation, we could 
observe that there exists a significant damping effect 
of convection in the upper layer on the motion in the 
lower layer, for a proper choice of the parameters, 
in particular when Re, = 2Re,. The thermocapillary 
force on the top surface has been shown to overcome 
that on the interface, even for Gr = IO’. Then, under 
the microgravity conditions (Gr + 0), the thermal 
convective flow in liquid 2 would be very weak since 
buoyancy forces are absent. 

6. CONCLUSION 

We have shown in this paper some typical con- 
vection patterns in the case of two superposed immis- 

. ulmin 

q uFmin 
- uF-Eq.(24) 
-W ul-Eq.(25) 
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FIG. IS. Characteristic results Re, = 2Re, = 8 x IO4 (in case B) for Gr = IOJ and Pr = 0.01 : (a) minimum 
velocities at two interfaces for different Reynolds numbers, Y’,,, = 1.8624 x IO’, Y’,i, = -0.8981 x 10’ ; 

(b) streamfunction patterns. 
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cible liquid layers, which are induced not only by 
density differences in the gravitational field, but also 
by interfacial tension gradients. Under the coupling of 
buoyancy and thermocapillary convections, the flow 
structures always have an obvious change in the 
regions near the interface when some parameters are 
changed. An interfacial convective cell is frequently 
displayed either in the upper layer or in the lower 
layer, in order to satisfy continuity of velocity and 
stress balance at the interface. The position and rela- 
tive size of this cell depends on various parameters, 
such as expansion coefficient, viscosity, thickness of 
each liquid layer. When the thickness or the buoyancy 
force decreases in one of the two phases, the interfacial 
tension plays a major role. The flow at the interface 
and in each of the two layers can be significantly 
controlled by a proper choice of physical parameters. 

This paper is just a preliminary investigation. The 
free surface was taken here as underformable so that 
numerical results could be compared to analytical 
solutions for infinite layers. A more detailed and 
quantitative investigation of two-layer systems should 
be made in the near future by considering interface 
deformation as well as the stability of the system, 
in particular, for therrnocapillary convection under 
microgravity conditions. 
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